
Extending the MPI-2 Generalized Request
Interface

Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{robl,gropp,rross,thakur}@mcs.anl.gov

Abstract. The MPI-2 standard added a new feature to MPI called gen-

eralized requests. Generalized requests allow users to add new nonblock-
ing operations to MPI while still using many pieces of MPI infrastructure
such as request objects and the progress notification routines (MPI Test,
MPI Wait). The generalized request design as it stands, however, has de-
ficiencies regarding typical use cases. These deficiencies are particularly
evident in environments that do not support threads or signals, such as
the leading petascale systems (IBM Blue Gene/L, Cray XT3 and XT4).
This paper examines these shortcomings, proposes extensions to the in-
terface to overcome them, and presents implementation results.

1 Introduction

In a message-passing environment, a nonblocking communication model often
makes a great deal of sense. Implementations have flexibility in optimizing com-
munication progress; and, should asynchronous facilities exist, computation can
overlap with the nonblocking routines.

MPI provides a host of nonblocking routines for independent communication,
and MPI-2 added nonblocking routines for file I/O. When callers post nonblock-
ing MPI routines, they receive an MPI request object, from which the state of
the nonblocking operation can be determined. Generalized requests, added as
part of the MPI-2 standard [1], provide a way for users to define new nonblock-
ing operations. Callers of these user-defined functions receive a familiar request
object and can use the same test and wait functions as a native request object. A
single interface provides a means to test communication, I/O, and user-defined
nonblocking operations.

Generalized requests, unfortunately, are difficult to use in some environments.
Our experience with generalized requests comes from using them to implement
nonblocking I/O in the widely available ROMIO MPI-IO implementation [2].

In the absence of generalized requests, ROMIO defines its own ROMIO-
specific request objects to keep track of state in its nonblocking MPI-IO routines.
With these custom objects, ROMIO does not need to know the internals of a
given MPI implementation. The usual MPI request processing functions, how-
ever, cannot operate on ROMIO’s custom objects, so ROMIO must also export

its own version of the MPI test and wait routines (MPIO TEST, MPIO WAIT, etc.).
Moreover, these custom objects and routines are not standards-conformant.

With the implementation of MPI-2 on many more platforms now, ROMIO
can use generalized requests instead of custom requests and functions. General-
ized requests allow ROMIO to adhere to the MPI standard and provide fewer
surprises to users of ROMIO’s nonblocking routines. Unfortunately, the current
definition of generalized requests makes it difficult (or in some instances im-
possible) to implement truly nonblocking I/O. To carry out asynchronous I/O
with generalized requests, ROMIO must spawn a thread or set up a signal han-
dler that can then test and indicate an asynchronous operation has completed.
Since threads or signal handlers cannot be used in all environments, however,
an alternative approach is desireable.

In this work we examine the shortcomings of the existing generalized request
system, propose improvements to the generalized request design, and discuss the
benefits these improvements afford.

2 MPI Requests vs. Generalized Requests

The MPI standard addresses the issue of progress for nonblocking operations
in Section 3.7.4 of [3] and Section 6.7.2 of [1]. MPI implementations have some
flexibility in how they interpret these two sections. The choice of a weak in-
terpretation (progress occurs only during MPI calls) or a strict interpretation
(progress can occur at any point in time) has a measurable impact on perfor-
mance, particularly when the choice of progress model affects the amount of
overlap between computation and communication [4].

The MPI-2 standard addresses the issue of progress for generalized requests
by defining a super-strict model in which no progress can be made during an
MPI call. When creating generalized requests, users must ensure all progress
occurs outside of the context of MPI.

Here’s how one uses generalized requests to implement a new nonblocking op-
eration. The new operation calls MPI GREQUEST START to get an MPI request ob-
ject. After the operation has finished its task, a call to MPI GREQUEST COMPLETE

marks the request as done. However, the completion call will never be invoked
by any MPI routine. All progress for a generalized request must be made outside
of the MPI context. Typically a thread or a signal handler provides the means
to make progress.

When we used generalized requests to implement nonblocking I/O routines in
ROMIO, we found this super-strict progress model limiting. In many situations
we do not want to or are unable to spawn a thread. Moreover, we recognized
that we could effectively apply generalized requests to more situations if we
could relax the progress model. We could also achieve a greater degree of overlap
between computation and file I/O.

3 Asynchronous File I/O

To illustrate the difficulties using generalized requests with ROMIO, we use
asynchronous file I/O as an example. The most common model today is POSIX
AIO [5], but Win32 Asynchronous I/O [6] and the PVFS nonblocking I/O in-
terfaces [7] share a common completion model with POSIX AIO.

Table 1. Typical functions for several AIO interfaces

POSIX AIO Win32 AIO PVFS v2

Initiate aio write WriteFileEx PVFS isys write

Test aio error SleepEx PVFS sys test

Wait aio suspend WaitForSingleObjectEx PVFS sys wait

Wait (all) aio suspend WaitForMultipleObjectsEx PVFS sys waitall

In Table 1 we show a few of the functions found in these three AIO interfaces.
The completion model looks much like that of MPI and involves two steps: post
an I/O request and then, at some point, test or wait for completion of that
request. After posting I/O operations, a program can perform other work while
the operating system asynchronously makes progress on the I/O request. The
operating system has the potential to make progress in the background though
all work could occur in either the initiation or the test/wait completion call.
This model lends itself well to programs with a single execution thread.

We note that POSIX AIO does define an alternative mechanism to indicate
completion via real-time signals. This signal-handler method fits well only with
POSIX AIO, however. Neither the other AIO interfaces nor other situations
where work is occurring asynchronously can make effective use of signals, and
so we will not consider them further.

4 Generalized Request Deficiencies

ROMIO, one of the earliest and most widely deployed MPI-IO implementations,
has portability as a major design goal. ROMIO strives to work with any MPI
implementation and on all platforms. Because of this portability requirement,
ROMIO cannot always use threads. While POSIX threads are available on many
platforms, they are notably not available on the Blue Gene/L or the Cray XT3
and XT4 machines, for example.

As discussed in Section 2, the requirement of a super-strict progress model
for generalized requests makes it difficult to create new nonblocking operations
without spawning a thread. Under this super-strict progress model, common
asynchronous I/O interfaces have no good thread-free mechanism by which to
invoke their completion routine.

Consider the code fragment in Figure 1 implementing MPI File iwrite. If
the implementation wishes to avoid spawning a thread, it must block: there is no

MPI_File_iwrite (..., *request) {

struct aiocb write_cb = { ... }

aio_write (& write_cb)

MPI_Grequest_start (..., request)

aio_suspend(write_cb , 1, MAX_INT)

MPI_Grequest_complete(request)

return;

}

Fig. 1. A thread-free way to use generalized requests. In the current generalized request
design, the post and the test for completion of an AIO operation and the call to
MPI GREQUEST COMPLETE must all happen before the routine returns. Future MPI Wait

routines will return immediately as the request is already completed.

other way to invoke aio suspend and MPI Grequest complete yet, a thread or
signal handler is unnecessary in the file AIO case: the operating system takes care
of making progress. This pseudocode is not a contrived example. It is essentially
the way ROMIO must currently use generalized requests. The current generalized
request design needs a way for the MPI test and wait routines to call a function
that can determine completion of such AIO requests.

Other Interfaces In addition to AIO, other interfaces might be able to make use
of generalized requests were it not for portability issues. Coupled codes, such as
those used in weather forecasting, need a mechanism to poll for completion of
various model components. This mechanism could use generalized requests to
initiate execution and test for completeness. Nonblocking collective communica-
tion lends itself well to generalized requests as well, especially on architectures
with hardware-assisted collectives. These interfaces, however, must accommo-
date the lack of thread support on Blue Gene/L and Cray XT series machines
and cannot use generalized requests in their current form if they wish to remain
portable.

In this paper we suggest improvements to the generalized request interface.
We use asynchronous I/O as an illustrative example. However, the benefits would
apply to many situations such as those given above where the operating envi-
ronment can do work on behalf of the process.

5 Improving the Generalized Request Interface

As we have shown, AIO libraries need additional function calls to determine the
state of a pending operation. We can accommodate this requirement by extend-
ing the existing generalized request functions. We propose an MPIX GREQUEST START

function similar to MPI GREQUEST START, but taking an additional function pointer
(poll fn) that allows the MPI implementation to make progress on pending

generalized requests. We give the prototype for this function in Figure 3 in the
Appendix.

When the MPI implementation tests or waits for completion of a gener-
alized request, the poll function will provide a hook for the appropriate AIO
completion function. It may be helpful to illustrate how we imagine an MPI
implementation might make use of this extension for the test and wait rou-
tines ({MPI TEST,MPI WAIT}{,ALL,ANY,SOME}). All cases begin by calling the
request’s user-provided poll fn. For the wait routines, the program continues
to call poll fn until either at least one request completes (wait, waitany, wait-
some) or all requests complete (wait, waitall).

An obvious defect of this approach is that the MPI WAIT{ANY/SOME/ALL} and
MPI WAIT functions must poll (i.e., busy wait). The problem is that we do not
have a single wait function that we can invoke. In Section 7 we provide a partial
solution to this problem.

6 Results

We implemented MPIX GREQUEST START in an experimental version of MPICH2 [8]
and modified ROMIO’s nonblocking operations to take advantage of this exten-
sion. Without this extension, ROMIO still uses generalized requests, but does so
by carrying out the blocking version of the I/O routine before the nonblocking
routine returns. With the extension, ROMIO is able to initiate an asynchronous
I/O operation, use generalized requests to maintain state of that operation, and
count on our modified MPICH2 to invoke the completion routine for that asyn-
chronous I/O operation during test or wait. This whole procedure can be done
without any threads in ROMIO.

Quantifying performance of a nonblocking file operation is not straightfor-
ward. Ideally, both the I/O and some unit of work execute concurrently and with
no performance degradation. Capturing both performance and this measure of
“overlap” can be tricky.

Nonblocking writes introduce an additional consideration when measuring
performance. Write performance has two factors: when the operating system
says the write is finished, and when the write has been flushed from buffers to
disk. Benchmark results for both old and new MPICH2 implementations look
quite similar, since MPI FILE SYNC dominates the time for both implementations.
We will therefore focus on performance of the more straightforward read case.

We used the Intel r©MPI Benchmarks package [9]. Our results are for “op-
tional” mode, only because we increased the maximum message size from 16 MB
to 512 MB in order to see how performance varied across a wider scale of I/O
sizes. Our test platform is a dual dual-core Opteron (4 cores total), writing to a
local software RAID-0 device.

We depict the results of the P IreadPriv benchmark in Figure 2(a) (2 pro-
cesses) and Figure 2(b) (4 processes). This MPI-IO test measures nonblocking
I/O performance when each process reads data from its own file (i.e., one file per

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 100 200 300 400 500 600

M
B

/s
ec

MiBytes

P_IRead_Priv (2proc)

Modified
Stock

(a) 2 Processes

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

M
B

/s
ec

MiBytes

P_IRead_Priv (4proc)

Modified
Stock

(b) 4 Processes

Fig. 2. P IRead Priv test with two MPI processes. “Stock” depicts standard (blocking)
generalized requests. “Modified” shows performance with our improvements.

process) while a synthetic CPU-heavy workload runs concurrently. The bench-
mark varies the size of the nonblocking I/O requests while keeping the CPU
workload fixed (0.1 seconds). 1 When comparing two MPI implementations, we
found computing the effective bandwidth at a given request size yielded a useful
metric for evaluating relative overlap. “Effective bandwidth” in this case means
the size of a request divided by the (inclusive) time taken to post the request, run
the CPU-heavy workload, and detect completion of that request. Higher effective
bandwidth means a higher degree of overlap between I/O and computation.

Both graphs have three regions of interest. For small I/O sizes, true nonblock-
ing operations give little if any benefit. As the amount of I/O increases, however,
effective bandwidth increases when the MPI implementation can carry out I/O
asynchronously. Asynchronous I/O benefits most — nearly three times at peak
— if there are spare CPUs, but even in the fully subscribed case we see almost a
doubling of peak performance. At large enough request sizes, the amount of I/O
dwarfs the fixed amount of computation, limiting the opportunities for I/O and
computation to overlap. Even so, asynchronous I/O on this platform appears to
benefit significantly from the unused cores in the two-process case. We suspect
polling in the MPI implementation might have an impact on I/O performance.
In Section 7 we propose a refinement that can limit busy-waiting.

We note that the work described in this paper enables asynchronous I/O.
Whether asynchronous I/O is beneficial or not depends on many factors, such
as application workload and the quality of a system’s AIO libraries. Finding
the ideal balance in overlapping I/O and computation is a fascinating area of
research but is beyond the scope of this paper.

1 This benchmark computes an “overlap” factor, but the computation in this case
gave odd and inconsistent results.

7 Further Improvements: Creating a Generalized Request
Class

With this simple extension to generalized requests we have already achieved
our main goals: ROMIO has a hook by which it can determine the status of a
pending AIO routine, and can do so without spawning a thread. If we observe
that generalized requests are created with a specific task in mind, we can further
refine this design.

In the AIO case, all callers are going to use the same test and wait rou-
tines. In POSIX AIO, for example, a nonblocking test for completion of an I/O
operation (read or write) can be carried out with a call to aio error, looking
for EINPROGRESS. AIO libraries commonly provide routines to test for comple-
tion of multiple AIO operations. The libraries also have a routine to block until
completion of an operation, corresponding to the MPI WAIT family.

We can give implementations more room for optimization if we introduce
the concept of a generalized request class. MPIX GREQUEST CLASS CREATE would
take the generalized request query, free, and cancel function pointers already
defined in MPI-2 along with our proposed poll function pointer. The routine
would also take a new “wait” function pointer. Initiating a generalized re-
quest then reduces to instantiating a request of the specified class via a call
to MPIX GREQUEST CLASS ALLOCATE. Prototypes for these routines are given in
Figure 4 in the Appendix.

At first glance this may appear to be just syntax: why all this effort just to
save passing two pointers? One answer is that in ROMIO’s use of generalized
requests, the query, free, and cancel methods are reused multiple times; Hence,
a generalized request class would slightly reduce duplicated code.

A more compelling answer lies in examining how to deal with polling. By
creating a class of generalized requests, we give implementations a chance to
optimize the polling strategy and minimize the amount of time consuming CPU
while waiting for request completion.

Refer back to Figure 2(b), where the unmodified, blocking MPICH2 outper-
forms the modified MPICH2 at the largest I/O request size. At this point, I/O
takes much longer to compute than the computation. All available CPUs are
executing the benchmark and polling repeatedly inside MPI Waitall until the
I/O completes. The high CPU utilization, aside from doing no useful work, also
appears to be interfering with the I/O transfer.

Our proposed generalized request class adds two features that together solve
the problem of needlessly consuming CPU in a tight testing loop. First, we
introduce wait fn, a hook for a blocking function that can wait until completion
of one or more requests. If multiple generalized requests are outstanding, an
implementation cannot simply call a user-provided wait routine (created with a
specific generalized request in mind) on all of them. If all the outstanding requests
are of the same generalized request class, however, the implementation might be
able to pass several or even all requests to a user-provided wait routine, which
in turn could complete multiple nonblocking operations. By avoiding repeated
polling and aggregating multiple requests, our generalized request class thus can

make processing user-defined nonblocking operations more efficient, particularly
in those MPI functions such as MPI WAITALL that take multiple requests.

Generalized request classes also open the door for the MPI implementation to
learn more about the behavior of these user-provided operations, and potentially
adapt. We imagine that an MPI implementation could keep timing information
or other statistics about a class of operations and adjust timeouts or otherwise
inform decisions in the same way Worringen automatically adjusts MPI-IO hints
in [10]. Implementations cannot collect such statistics without a request class,
since those implementations can glean meaningful information only by looking
at generalized requests implementing a specific feature.

8 Conclusions

Generalized requests in their current form do much to simplify the process of
creating user-provided nonblocking operations. By tying into an implementa-
tion’s request infrastructure, users avoid reimplementing request bookkeeping.
Unfortunately, while generalized requests look in many ways like first-class MPI
request objects, the super-strict progress model hinders their usefulness. Whereas
an MPI implementation is free to make progress for a nonblocking operation in
the test or wait routine, generalized requests are unable to make progress in
this way. This deficiency manifests itself most when interacting with common
asynchronous I/O models, but it is also an issue when offloading other system
resources.

We have presented a basic extension to the generalized request design as
well as a more sophisticated class-based design. In reviewing the MPI Forum’s
mailing list discussions about generalized requests, we found early proposals
advocating an approach similar to ours. A decade of implementation experience
and the maturity of AIO libraries show that these early proposals had merit
that perhaps went unrecognized at the time. For example, at that time it was
thought that using threads would solve the progress problem, but today we are
faced with machines for which threads are not an option.

Our extensions would greatly simplify the implementation of nonblocking I/O
operations in ROMIO or any other library trying to extend MPI with custom
nonblocking operations. Class-based approaches to making progress on oper-
ations would alleviate some of the performance concerns of using generalized
requests.

Unlike many MPI-2 features, generalized requests have seen neither widespread
adoption nor much research interest. We feel the extensions proposed in this pa-
per would make generalized requests more attractive for library writers and for
those attempting to use MPI for system software, in addition to opening the
door for additional research efforts.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing

Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357.

Appendix: Function Prototypes

In this paper we have proposed several new MPI routines. Figure 3 and Figure 4
give the C prototypes for these routines.

int MPIX_Grequest_start (

MPI_Grequest_query_function *query_fn ,

MPI_Grequest_free_function *free_fn ,

MPI_Grequest_cancel_function *cancel_fn ,

MPIX_Grequest_poll_function *poll_fn ,

void *extra_state ,

MPI_Request *request)

typedef int MPIX_Grequest_poll_fn(

void *extra_state ,

MPI_Status *status);

Fig. 3. Prototypes for generalized request poll extension

typedef int MPIX_Grequest_wait_fn(

int count ,

void *array_of_states ,

double timeout ,

MPI_Status *status);

int MPIX_Grequest_class_create(

MPI_Grequest_query_function *query_fn ,

MPI_Grequest_free_function *free_fn ,

MPI_Grequest_cancel_function ,

MPIX_Grequest_poll_fn ,

MPIX_Grequest_wait_fn ,

MPIX_Request_class *greq_class);

int MPIX_Grequest_class_allocate(

MPIX_Request_class greq_class ,

void *extra_state

MPI_Request *request)

Fig. 4. Prototypes for generalized request classes and blocking wait function.

References

1. The MPI Forum: MPI-2: Extensions to the message-passing interface. The MPI
Forum (July 1997)

2. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems. (May 1999) 23–32

3. Message Passing Interface Forum: MPI: A message-passing interface standard.
Technical report (1994)

4. Brightwell, R., Riesen, R., Underwood, K.: Analyzing the impact of overlap,
offload, and independent progress for MPI. The International Journal of High-
Performance Computing Applications 19(2) (Summer 2005) 103–117

5. IEEE/ANSI Std. 1003.1: Single UNIX specification, version 3 (2004 edition)
6. Microsoft corporation: Microsoft Developer Network Online Documentation,

http://msdn.microsoft.com. (accessed 2007)
7. PVFS development team: The PVFS parallel file system. http://www.pvfs.org/

(accessed 2007)
8. MPICH2 development team: MPICH2. http://www.mcs.anl.gov/mpi/mpich2

9. Intel GmbH: Intel MPI benchmarks. http://www.intel.com
10. Worringen, J.: Self-adaptive hints for collective I/O. In: Proceedings of the 13th

European PVM/MPI User’s Group Meeting, Bonn, Germany (September 2006)
202–211

